NumPy - Matplotlib 直方图

NumPy - Matplotlib 直方图 首页 / Numpy入门教程 / NumPy - Matplotlib 直方图

NumPy具有numpy.histogram()函数,该函数是数据频率分布的图形表示,水平大小相等的矩形对应于称为bin的类区间,而可变高度则对应于频率。

numpy.histogram()

numpy.histogram()函数将输入数组和bin作为两个参数。bin数组中的连续元素充当每个bin的边界。

import numpy as np 
   
a=np.array([22,87,5,43,56,73,55,54,11,20,51,5,79,31,27]) 
np.histogram(a,bins=[0,20,40,60,80,100]) 
hist,bins=np.histogram(a,bins=[0,20,40,60,80,100]) 
print hist 
print bins 

它将产生以下输出-

[3 4 5 2 1]
[0 20 40 60 80 100]

plt()

Matplotlib可以将这种直方图的数字表示形式转换为图形。 pyplot子模块的 plt()函数将包含数据和bin数组的数组作为参数,并转换为直方图。

无涯教程网

链接:https://www.learnfk.comhttps://www.learnfk.com/numpy/numpy-histogram-using-matplotlib.html

来源:LearnFk无涯教程网

from matplotlib import pyplot as plt 
import numpy as np  
   
a=np.array([22,87,5,43,56,73,55,54,11,20,51,5,79,31,27]) 
plt.hist(a, bins=[0,20,40,60,80,100]) 
plt.title("histogram") 
plt.show()

它应该产生以下输出-

Histogram Plot

祝学习愉快!(内容编辑有误?请选中要编辑内容 -> 右键 -> 修改 -> 提交!)

技术教程推荐

趣谈网络协议 -〔刘超〕

小马哥讲Spring核心编程思想 -〔小马哥〕

Service Mesh实战 -〔马若飞〕

手机摄影 -〔@随你们去〕

A/B测试从0到1 -〔张博伟〕

Spring编程常见错误50例 -〔傅健〕

程序员的测试课 -〔郑晔〕

后端工程师的高阶面经 -〔邓明〕

AI大模型企业应用实战 -〔蔡超〕

好记忆不如烂笔头。留下您的足迹吧 :)