Consider the following example:

import Foundation
import os.log

class OSLogWrapper {

    func logDefault(_ message: StaticString, _ args: CVarArg...) {
        os_log(message, type: .default, args)
    }

    func testWrapper() {
        logDefault("WTF: %f", 1.2345)
    }
}

If I create a new instance of OSLogWrapper and call testWrapper()

let logger = OSLogWrapper()
logger.testWrapper()

I get the following output in the Xcode console:

2018-06-19 18:21:08.327979-0400 WrapperWTF[50240:548958] WTF: 0.000000

I've checked everything I can think of and I can't make heads or tails of what's going wrong here. Looking through the documentation isn't yielding anything helpful.

推荐答案

The compiler implements variadic arguments by casting each argument to the declared variadic type, packaging them into an Array of that type, and passing that array to the variadic function. In the case of testWrapper, the declared variadic type is CVarArg, so when testWrapper calls logDefault, this is what happens under the covers: testWrapper casts 1.2345 to a CVarArg, creates an Array<CVarArg>, and passes it to logDefault as args.

Then logDefault calls os_log, passing it that Array<CVarArg> as an argument. This is the bug in your code. The bug is quite subtle. The problem is that os_log doesn't take an Array<CVarArg> argument; os_log is itself variadic over CVarArg. So Swift casts args (an Array<CVarArg>) to CVarArg, and sticks that casted CVarArg into another Array<CVarArg>. The structure looks like this:

Array<CVarArg> created in `logDefault`
  |
  +--> CVarArg (element at index 0)
         |
         +--> Array<CVarArg> (created in `testWrapper`)
                |
                +--> CVarArg (element at index 0)
                       |
                       +--> 1.2345 (a Double)

Then logDefault passes this new Array<CVarArg> to os_log. So you're asking os_log to format its first element, which is (sort of) an Array<CVarArg>, using %f, which is nonsense, and you happen to get 0.000000 as output. (I say “sort of” because there are some subtleties here which I explain later.)

So, logDefault passes its incoming Array<CVarArg> as one of potentially many variadic parameters to os_log, but what you actually want logDefault to do is pass on that incoming Array<CVarArg> as the entire set of variadic parameters to os_log, without re-wrapping it. This is sometimes called “argument splatting” in other languages.

Sadly for you, Swift doesn't yet have any syntax for argument splatting. It's been discussed more than once in Swift-Evolution (in this thread, for example), but there's not yet a solution on the horizon.

The usual solution to this problem is to look for a companion function that takes the already-bundled-up variadic arguments as a single argument. Often the companion has a v added to the function name. Examples:

  • printf (variadic) and vprintf (takes a va_list, C's equivalent of Array<CVarArg>)
  • NSLog (variadic) and NSLogv (takes a va_list)
  • -[NSString initWithFormat:] (variadic) and -[NSString WithFormat:arguments:] (takes a va_list)

So you might go looking for an os_logv. Sadly, you won't find one. There is no documented companion to os_log that takes pre-bundled arguments.

You have two options at this point:

  • Give up on wrapping os_log in your own variadic wrapper, because there is simply no good way to do it, or

  • Take Kamran's advice (in his comment on your question) and use %@ instead of %f. But note that you can only have a single %@ (and no other format specifiers) in your message string, because you're only passing a single argument to os_log. The output looks like this:

    2018-06-20 02:22:56.132704-0500 test[39313:6086331] WTF: (
        "1.2345"
    )
    

You could also file an enhancement request radar at https://bugreport.apple.com asking for an os_logv function, but you shouldn't expect it to be implemented any time soon.

So that's it. Do one of those two things, maybe file a radar, and move on with your life. Seriously. Stop reading here. There's nothing good after this line.


Okay, you kept reading. Let's peek under the hood of os_log. It turns out the implementation of the Swift os_log function is part of the public Swift source code:

@_exported import os
@_exported import os.log
import _SwiftOSOverlayShims

@available(macOS 10.14, iOS 12.0, watchOS 5.0, tvOS 12.0, *)
public func os_log(
  _ type: OSLogType,
  dso: UnsafeRawPointer = #dsohandle,
  log: OSLog = .default,
  _ message: StaticString,
  _ args: CVarArg...)
{
  guard log.isEnabled(type: type) else { return }
  let ra = _swift_os_log_return_address()

  message.withUTF8Buffer { (buf: UnsafeBufferPointer<UInt8>) in
    // Since dladdr is in libc, it is safe to unsafeBitCast
    // the cstring argument type.
    buf.baseAddress!.withMemoryRebound(
      to: CChar.self, capacity: buf.count
    ) { str in
      withVaList(args) { valist in
        _swift_os_log(dso, ra, log, type, str, valist)
      }
    }
  }
}

So it turns out there is a version of os_log, called _swift_os_log, that takes pre-bundled arguments. The Swift wrapper uses withVaList (which is documented) to convert the Array<CVarArg> to a va_list and passes that on to _swift_os_log, which is itself also part of the public Swift source code. I won't bother quoting its code here because it's long and we don't actually need to look at it.

Anyway, even though it's not documented, we can actually call _swift_os_log. We can basically copy the source code of os_log and turn it into your logDefault function:

func logDefaultHack(_ message: StaticString, dso: UnsafeRawPointer = #dsohandle, _ args: CVarArg...) {
    let ra = _swift_os_log_return_address()
    message.withUTF8Buffer { (buf: UnsafeBufferPointer<UInt8>) in
        buf.baseAddress!.withMemoryRebound(to: CChar.self, capacity: buf.count) { str in
            withVaList(args) { valist in
                _swift_os_log(dso, ra, .default, .default, str, valist)
            }
        }
    }
}

And it works. Test code:

func testWrapper() {
    logDefault("WTF: %f", 1.2345)
    logDefault("WTF: %@", 1.2345)
    logDefaultHack("Hack: %f", 1.2345)
}

Output:

2018-06-20 02:22:56.131875-0500 test[39313:6086331] WTF: 0.000000
2018-06-20 02:22:56.132704-0500 test[39313:6086331] WTF: (
    "1.2345"
)
2018-06-20 02:22:56.132807-0500 test[39313:6086331] Hack: 1.234500

Would I recommend this solution? No. Hell no. The internals of os_log are an implementation detail and likely to change in future versions of Swift. So don't rely on them like this. But it's interesting to look under the covers anyway.


One last thing. Why doesn't the compiler complain about converting Array<CVarArg> to CVarArg? And why does Kamran's suggestion (of using %@) work?

It turns out these questions have the same answer: it's because Array is “bridgeable” to an Objective-C object. Specifically:

This silent conversion is probably often an error (as it was in your case), so it would be reasonable for the compiler to warn about it, and allow you to silence the warning with an explicit cast (e.g. args as CVarArg). You could file a bug report at https://bugs.swift.org if you want.

Swift相关问答推荐

SwiftData查询按日期排序的项的属性数组

";async let和";async之间的差异让我们等待";

如何在AudioKit中实现自定义音效 node ?

如何在枚举有关联数据时使用combined if with case

同时具有每个文本的标识符的文本组的可扩展性标识符

使用变量(而非固定)的字符串分量进行Swift正则表达式

Swift计时器未触发

为什么自定义串行队列的目标是全局队列时,Swift中不会并发执行?

为什么 UITapGestureRecognizer 对于 Swift 集合视图中的单元格图像无法正常工作?

SwiftUI:列表背景为空列表时为黑色

数组中某些元素的总和

如何在不提交到应用store 的情况下在本地运行我的应用

为 SwiftUI 中的属性提供默认值

Swift:创建用于调用 C 函数的指针数组

Reality Composer Tap Trigger 问题

在运行时访问 UIView 宽度

在 UItextfield 的右视图上添加一个按钮,文本不应与按钮重叠

用 UIBezierPath 画一条线

如何快速格式化用户显示(社交网络等)的时间间隔?

带有默认值的 Swift 可选变量赋值(双问号)